2025

RESPECTLIFE

Mirella Civardi

Empowering Sustainable Business: Technical and Environmental Analysis of Polypropylene in Work wear Textiles

Case Study: Sustainable work wear apparel Innovation with RFID & Al-Driven Circularity

Sommario

Case Study: Sustainable work wear apparel Innovation with RFID & Al-Driven Circularity	2
Advantages of Polypropylene in Elis Italia Project	2
Energy Savings (PP vs. Cotton)	3
Summary Table: Environmental & Economic Savings (PP vs. Cotton)	5
Additional Savings with RFID Tracking	5
Combined Benefits (PP + RFID)	6
Technical Comparison: Cotton, Polyester, and Polypropylene	8
1. WatEr Absorption	8
2. Specific Weight	8
3. Thermal Conductivity	8
4. Thermal Insulation	8
5. Thermal & Thermodynamic Properties	8
6. Performance in Extreme Cold	9
7. Flame REACTION	9
8. Color Fastness	9
9. Hypoallergenicity and Biocompatibility	9
10. Acid and Base Resistance Comparison Table	10
Technical Comparison: Cotton vs. Polyester vs. Polypropylene	11
Environmental Impact	12
CO ² per kg	12
Water Consumption and Land Use	13
Dyeing process	14
ENVIRONMENTAL IMPACT OF TRADITIONAL DETERGENT CHEMICAL COMPONENTS	15
End-of-Life	17
Environmental cost per 1 kg of traditional fabric	18
Recycling environmental cost per 1 kg of polyester (pet)	18
Respectlife's 100% pure pp recycling methods	18
SIMPLIFIED SIIMMARY TARLE FND OF LISE	20

Case Study: Sustainable work wear apparel Innovation with RFID & AI-Driven Circularity

Client: Elis Italia – Leading industrial laundry service provider for healthcare textiles

Objective: Replace 1,000 cotton hospital sweatshirts with polypropylene (PP) garments, integrating RFID tracking and AI to enhance hygiene, sustainability, and operational efficiency.

KPIs cover environmental impact reduction, service reliability (via RFID-enabled traceability)

The collaboration between Respectlife and Elis Italia is rooted in a common vision: to revolutionize textile management by integrating sustainability, innovation, and data-driven efficiency.

Advantages of Polypropylene in Elis Italia Project Sustainability:

- Reduced water consumption (PP doesn't absorb moisture, requires fewer washes/energy).
- Recyclability integrated with RFID tracking.

Hygiene:

- Resistance to mold/bacteria (super-hydrophobicity).
- Compatibility with sterilization (autoclave, Sterrad).

Operational Efficiency:

- RFID tracks lifecycle, optimizes laundering and disposal.
- Al predicts wear and reduces waste.

Comfort & Safety:

- Lightweight (+69% lighter than cotton).
- Superior thermal insulation and flame resistance.

Conclusion: PP offers the best balance of **technical performance**, **sustainability**, **and hygiene**, making it ideal for work wear environments.

Case Study

Sustainable *work wear a*pparel Innovation with RFID & Al-Driven Circularity

COTTON WORK WEAR SWEATSHIRTS VS POLYPROPYLENE SWEATSHIRTS Projections of Energy and pollution Savings

Weight

- Cotton: ~1.54 g/cm³; heavier than synthetics.
- Polypropylene: ~0.91 g/cm³; extremely lightweight, offering better volume with less weight.

	Specific weight gr/cm3	Weight of 1 sweatshirt (Kg)	Weight for 1000 sweatshirts (Kg)	Weight
Polypropylene	0.91	0.320	320	
Cotton	1.54	0.540	540	+69%

Water Consumption for Production

	Weight Total (Kg)	Water per 1 kg (liters)	Total Water for Production (Liters)
Polypropylene	320	0.6	106
Cotton	540	10,000*	5,408,000

^{*}Data source: The World Counts, also, global cotton production requires over 250 billion tons of water annually.

Dyeing process

The key solution to drastically reducing water and energy use in the **dyeing process** lies within moving from wet processes to dry processes.

Raw material 1kg	Liters Water
Respectlife	0
Cotton	150

Energy Consumption for Heating Water for Industrial Washing Machines

For industrial washing machines with a 200 kg load capacity, energy consumption varies depending on the temperature:

Energy Savings (PP vs. Cotton)

Energy Type	PP	Cotton	Absolute Savings	Percentage	
	Consumption	Consumption		Savings	

Electricity (kWh)	96–192	972-1,350	780–1,158 kWh less	80-86% less
Thermal (MJ)	160-320	1,620-2,430	1,300-2,110 MJ less	80-87% less

Key Takeaways:

- Electricity savings: Up to 86% less (1,158 kWh saved per 1,000 sweatshirts).
- Thermal energy savings: Up to 87% less (2,110 MJ saved per 1,000 sweatshirts).

PP is more efficient because:

Washes at 30°C (vs. 75°C for cotton).

Lighter weight (320 kg vs. 540 kg).

End of Use

The environmental and economic cost of disposing of 1000 cotton sweatshirts

Total weight of cotton sweatshirts:

o Total Weight for 1000 sweatshirts: 540 kg

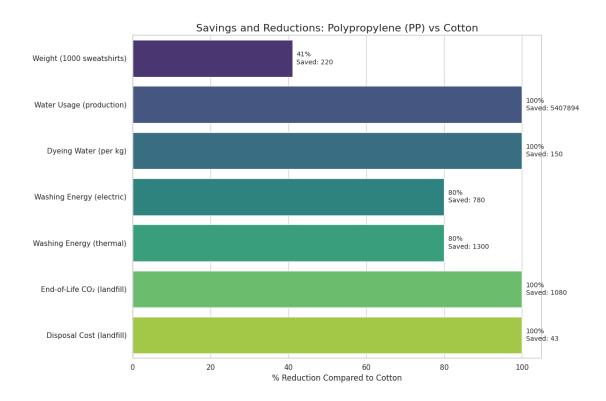
Environmental Cost of cotton:

o **Landfill:** If the garments are sent to a landfill, they decompose over time but will release methane (a greenhouse gas). Transporting garments to a landfill also emits CO_2 . On average, it is estimated that textile landfill disposal generates 2-3 kg of CO_2 equivalent per kg of waste.

For 540 kg of sweatshirts, this could mean 1080-1620 kg of CO₂ released.

o **Incineration:** If the garments are incinerated, the process reduces waste volume but produces CO₂ emissions and other pollutants. On average, incineration can generate about 1-2 kg of CO₂ per kg of fabric.

For 540 kg of sweatshirts, incineration would produce about 540-1080 kg of CO₂.


Economic Cost of cotton:

- o **Transport and landfill disposal:** Disposal costs vary by country and local policies. In European countries, for example, the average costs for landfill disposal can range between 80 and 150 euros per ton of waste.
- o **Incineration:** Incineration can be more expensive, with costs ranging from 100 to 200 euros per ton.

Summary Table: Environmental & Economic Savings (PP vs. Cotton)

Category	Polypropylene (PP)	Cotton	Savings (PP vs. Cotton)	% Reduction
Weight (1000 sweatshirts)	320 kg	540 kg	220 kg less	41% lighter
Water Usage (production)	106 liters	5,408,000 liters	5,407,894 liters less	~100% less
Dyeing Water (per kg)	0 liters	150 liters	150 liters less	100% less
Washing Energy (electric)	96–192 kWh	972–1,350 kWh	780–1,158 kWh less	80-86% less
Washing Energy (thermal)	160-320 MJ	1,620–2,430 MJ	1,300–2,110 MJ less	80-87% less
End-of-Life CO ₂ (landfill)	0 kg (recyclable)	1,080–1,620 kg	100% reduction	100% less
Disposal Cost (landfill)	€0 (reusable)	€43-81 (for 540 kg)	100% cost saved	100% less

Additional Savings with RFID Tracking

Implementing **RFID** (**Radio-Frequency Identification**) for tracking hospital sweatshirts further improves efficiency:

1. Operational Savings

- **Reduced Losses:** Prevents garment loss (typical loss rates in hospitals: 10-20%).
 - o **Savings:** Avoid repurchasing **100–200 sweatshirts/year** (€2,000–€4,000 saved).
- Optimized Laundry Cycles:
 - o Tracks wash counts, extending garment lifespan by 15–30%.
 - o Reduces replacement costs by ~€3,000/year (for 1,000 sweatshirts).

2. Energy & Labor Savings

- Automated Inventory: Saves 5–10 hours/week in manual tracking.
- **Smart Washing:** RFID triggers:
 - o **Cold wash only** for PP (avoiding accidental hot washes).
 - o Reduced rewashing (saving 5–10% water/energy).

3. Environmental Impact

- Less Waste: Fewer lost/discarded garments = lower CO₂ from production/disposal.
- **Data-Driven Sustainability:** Monitors real-time usage to optimize stock (reducing overproduction).

Combined Benefits (PP + RFID)

Metric	PP Alone	PP + RFID	Additional Savings
Lifespan Extension	20% longer	30–50% longer	+10–30%
Annual Cost Savings	~€5,000 (energy/water)	~€8,000–€10,000	+€3,000–€5,000
CO₂ Reduction	~3,000 kg/year	~4,500 kg/year	+1,500 kg/year

Conclusion: Switching to PP sweatshirts + RFID tracking maximizes savings:

- Up to 87% less energy/water.
- ~€10,000/year cost reduction.
- Near-zero textile waste.

RFID Tracking for Hospital Sweatshirts: Savings & Benefits

Operational Savings

- Reduced Losses: Prevents 100-200 sweatshirt losses/year (€2,000-€4,000 saved)
- Optimized Laundry: Extends lifespan by 15-30%, saves ~€3,000/year

Energy & Labor Savings

- Automated Inventory: Saves 5–10 hours/week
- Smart Washing: Cold wash for PP, 5-10% water/energy savings

Environmental Impact

- Less Waste: Fewer lost/discarded garments
- Data-Driven Sustainability: Optimized stock reduces overproduction

Combined Benefits (PP + RFID)

- Lifespan Extension: +10-30% over PP alone
- Annual Cost Savings: +€3,000-€5,000
- CO2 Reduction: +1,500 kg/year

Conclusion

- Up to 87% less energy/water
- ~€10,000/year cost reduction
- · Near-zero textile waste

Technical Comparison: Cotton, Polyester, and Polypropylene

1. WatEr Absorption

Fiber Type	Absorption Rate (%)	Notes
Polypropylene	<0.03	Negligible absorption
Polyester	<0.9	Low absorption
Cotton	25–30	High absorption

2. Specific Weight

219111		
Fiber Type	Density (g/cm³)	Relative Weight Increase
		Compared to PP
Polypropylene	0.91	-
Polyester	1.38	+51%
Cotton	1.54	+69%

Observation: PP offers more bulk and coverage per unit weight.

3. Thermal Conductivity

Fiber Type	Thermal Conductivity (W/mK)	Performance
Polypropylene	0.22	Excellent insulation, low heat transfer
Polyester	0.05	Moderate insulation
Cotton	0.04	Loses insulation when wet

4. Thermal Insulation

Fiber Type	Heat Transmission Coefficient	Insulation Quality
11861 1786	Trodi Irdi Siriissiori Godinolorii	miscramerr acam,
Polypropylene	6.0	High (best performance)
1 01/61 06/10110	0.0	riigir (bosi porronnanco)
Polyester	7.0	Good
1 01/03101	7.0	8884
Cotton	17.5	Poor when humid
COHOH	17.5	1 OOI WITCHTHOTHIG

Lower coefficient indicates better heat retention.

5. Thermal & Thermodynamic Properties

- o **Polypropylene:** Melts at ~160°C, resistant to heat but less durable under high-temperature stress. **Autoclavable:** steam at 120°C, Sterrad (all cycles), gamma rays.
- o **Polyester:** Handles up to ~250°C but melts under intense heat.

o **Cotton**: High-temperature tolerance, degrades above 150°C.

6. Performance in Extreme Cold

- o **Polypropylene**: Excellent performance in cold environments.
- o **Polyester:** Flexible, reliable insulation.
- o **Cotton:** Becomes rigid, less comfortable.

7. Flame REACTION

1011	
Fiber Type	Flame Reaction
Polypropylene	Self-extinguishing when removed from flame*
Polyester	Flame-retardant, melts rather than burns
Cotton	Highly flammable

^{*}UNI 846 Fire Test (Respectlife): Category 1

8. Color Fastness

233	
Fiber Type	Resistance to Fading
Polypropylene	High resistance; pigments integrated in polymer*
Polyester	Excellent; intrinsic pigmentation
Cotton	Fades over time with sunlight and washing

^{*}Xenotest ISO 105B02 (Respectlife): Score ≥ 5/6 on blue scale

9. Hypoallergenicity and Biocompatibility

Skin Irritation and Allergies

Polypropylene (PP)

- Inert and hypoallergenic; FDA-approved for medical use (e.g., masks, sutures) (source: FDA CFR Title 21).
- Moisture-repellent, reducing bacterial growth (source: *Journal of Biomedical Materials Research*, 2018).

Polyester

- Synthetic and less breathable; may cause skin irritation in sensitive individuals.
- Can release microfibers and may contain finishing chemicals unless Oeko-Tex® certified.

Cotton

- Natural and breathable, but can retain allergens (dust mites, pollen) if untreated.
- Non-certified fabrics may contain chemical residues (e.g., formaldehyde, heavy metals) from farming or dyeing (source: ECHA).

Biocompatibility

Polypropylene (PP) • Used in surgical implants for resistance to foreign body reactions (source: ISO 10993-1:2018).

Polyester • Biocompatibility varies by formulation; generally not used in implants due to lower tolerance by the immune system.

Cotton • Prone to mold growth in humid environments—a risk for immunocompromised patients (source: CDC Guidelines).

10. Acid and Base Resistance Comparison Table

Property	Polypropylene	Polyester	Cotton
Acid Resistance	Excellent – Resists most mineral acids (HCI, H_2SO_4 , HNO_3). Weak against strong oxidizers (oleum, fuming HNO_3).	Good – Resists dilute acids (acetic, citric). <i>Poor</i> against concentrated H ₂ SO ₄ , HNO ₃ .	Moderate to Poor – Degrades in strong acids unless treated (e.g., aldehyde finishes).
Base Resistance	Excellent – Highly resistant to NaOH, KOH, and other strong bases.	Poor – Degrades in strong alkalis (NaOH, KOH) due to hydrolysis.	Poor – Cellulose breaks down in strong bases (e.g., mercerization in NaOH).
Moisture Absorption	Very low (hydrophobic).	Low (but absorbs slightly more than PP).	High (prone to hydrolysis).
Scientific References	HMC Polymers Chemical Guide, Engineering Toolbox, Calpac Lab Charts	Rubber & Seal Guide, Allbro GRP Chemical Chart	Wiley Polymer Science, BMC Plant Biology, Frontiers in Plant Science

- **Polypropylene** is the most chemically resistant of the three, especially in both acidic and basic environments.
- **Polyester** performs well in acidic and neutral conditions but breaks down in alkaline environments due to ester bond hydrolysis.
- **Cotton**, being a natural cellulose fiber, is sensitive to both strong acids and bases unless chemically treated.

Technical Comparison: Cotton vs. Polyester vs. Polypropylene

Property	Polypropylene	Polyester	Cotton
Water Absorption (%)	<0.03 (negligible)	<0.9 (low)	25-30 (high)
Specific Weight (g/cm³)	0.91 (lightweight)	1.38 (+51% vs. PP)	1.54 (+69% vs. PP)
Thermal Conductivity	0.22 W/mK (excellent insulation)	0.05 W/mK (moderate)	0.04 W/mK (poor when wet)
Thermal Insulation	Coefficient: 6.0 (best)	Coefficient: 7.0 (good)	Coefficient: 17.5 (poor when damp)
Heat Resistance	Melts at ~160°C; autoclavable (120°C)	Melts at ~250°C	Degrades above 150°C
Cold Weather Performance	Excellent (flexible)	Good	Stiff/uncomfortable
Flame Reaction	Self-extinguishing (UNI 846 Category 1)	Flame-retardant (melts)	Highly flammable
Color Fastness	High (pigments integrated in polymer)	Excellent	Fades with washing/light exposure
Hypoallergenic Properties	Hypoallergenic (FDA-approved)	Potential irritation (microfiber shedding)	Traps allergens (dust mites, pollen)
Bacteria growth	NO	High	YES
Chemical Resistance	Acids: Excellent Bases: Excellent	Acids: Good Bases: Poor	Acids/Bases: Poor (unless treated)

Environmental Impact

CO² per kg

CONVENTIONAL COTTON

Global average value:

- ~8.1 kg CO₂eq/kg Quantis (2018)
- 5-10 kg CO₂eq/kg average value, but it can exceed 20 kg Textile Exchange (2021)

Why this variability?

- Irrigation: Cotton grown in arid regions (e.g., India, Pakistan) requires more energy for water, increasing emissions.
- Fertilizers: The production of nitrogen-based fertilizers is highly CO₂-intensive.
- Transport and processing.

Full sources

Textile Exchange (2021). Preferred Fiber & Materials Market Report.

Quantis (2018). Measuring Fashion Report.

Water Footprint Network (2015). Water Footprint Assessment of Cotton.

Journal of Cleaner Production (2017). LCA of Cotton Production Systems.

VIRGIN POLYESTER

Global average value:

- ~6.4 kg CO₂eq/kg CO2 Everything (2025)
- 5-10 kg CO₂eq/kg Carbonfact (2025)*

Why this variability?

- Energy-intensive processes: Production requires heat and pressure, often powered by non-renewable sources.
- Limited recycling: Virgin polyester has a higher footprint than recycled polyester, which can reduce emissions by up to 30–50%.

Full sources

Carbonfact (2025). The Carbon Footprint of Polyester

CO2 Everything (2025). Polyester Carbon Footprint

LUT University (2024). Polyester Production: Transitioning from Fossil Fuels to Sustainable Alternatives

MDPI Sustainability Journal (2024). Carbon Footprint Analysis in Textile Industry

VIRGIN POLYPROPYLENE

Global average value:

- ~1.7–2.0 kg CO₂eq/kg LUT University (2024), MDPI (2024)
- May range from 1.5 to 2.5 kg CO₂eg/kg Basell Poliolefine Italia (2005)*

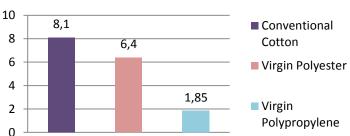
Why this variability?

Spheripol process: One of the most efficient methods for producing PP, with loop reactors and Ziegler-Natta catalysts that reduce energy consumption.

Energy sources: The CO₂ footprint depends on the type of energy used (e.g. natural gas vs. renewables).

^{*} depending on the process and energy source

^{*}depending on energy efficiency and the energy mix used



Full sources

Basell Poliolefine Italia (2005). Technical report on polypropylene production – Italian Ministry of Environment LUT University (2024). Polypropylene Production: Transitioning from Fossil Fuels to Sustainable Alternatives MDPI Sustainability Journal (2024). Carbon Footprint Analysis in Textile Industry

Material	CO₂eq/kg (Average Range)
Conventional Cotton	8,1
Virgin Polyester	6,4
Virgin Polypropylene	1,85

CO₂eq/kg (Average Range)

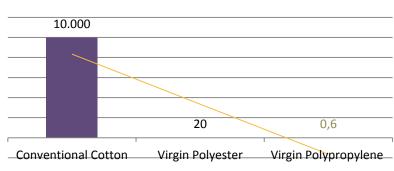
Water Consumption and Land Use

CONVENTIONAL COTTON

Global average value:

- o 10,000–20,000 litres of water per 1 kg (source: Water Footprint Network).
- o Requires 5.3 m² of land per 1 kg (source: FAO, 2020).
- o Pesticides and fertilizers: Conventional cotton uses **16%** of the world's insecticides and **7%** of its pesticides (source: PAN Europe).

POLYESTER


- o 20 litres of water per 1 kg (source: Textile Exchange).
- o No agricultural land use (derived from petroleum/gas).

POLYPROPYLENE

- o 0.6 litres of water per 1 kg (source: Plastics Europe).
- o No agricultural land use (derived from petroleum/gas).

Material	Liters of water/kg
Conventional Cotton	10.000
Virgin Polyester	20
Virgin Polypropylene	0,6

Liters of water/kg

Full sources

Textile Exchange / Water Footprint Network (2017): Water Footprint Assessment of Polyester and Viscose. ICAC – International Cotton Advisory Committee (2025): Water Footprint in Cotton 2020–2024: A Global Analysis.

FAO (2020): Land Use Statistics and Indicators

Dyeing process

COTTON

- ~150 L/kg of water required for reactive dyeing—the most common dyeing method for cotton.
- This process uses approximately 0.6–0.8 kg of salt (NaCl) and ~40 g of reactive dye per kilogram of fabric. Source: Environment & Ecology, 2017

POLYESTER

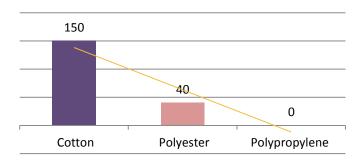
- Modern dyeing methods (low-liquor ratio machines): 40–80 L/kg
- Traditional dyeing processes: 100–150 L/kg. Source: European Commission, 2021

Chemical Use - Reactive Dyeing traditonal fabrics

Category	Parameter	Range	Unit
CHEMICALS	Salt (NaCl o a ₂ SO ₄)	0.5-1	kg/kg
	Alkalis (NaOH, a ₂ CO ₃)	5-20	g/kg
	Dye	30-60 (20-50% lost)	g/kg
POLLUTION	COD (Chemical Oxygen Demand)	50-200	g/kg
	Dissolved Salt (TDS)	2-10	kg/kg
	Heavy Metals (Cr, Cu)	Traces	-

Fonts: EU BAT (2021), OECD (2017), Textile Exchange (2020)

POLYPROPYLENE


- **0** liter of water consumption and no dye release in wastewater.
- Pigments are directly added to the molten polymer prior to spinning (extrusion), fully eliminating the need for post-production dyeing.

Parameter	Mass Pigmentation
Water	0 L/kg
Energy	Reduced (extrusion only)
Chemical	NO
Free dye	NO
Efficiency	100% pigment fixation

Material	Liters of water/kg
Cotton	150
Polyester	40
Polypropylene	0

Liters of water/kg dyeing

Full sources OECD (2017), Environmental Impact of the Textile and Clothing Industry. Environment & Ecology (2017), Impact of Textile Dyes on Water Bodies.

Textile Exchange (2020), Preferred Fiber & Materials Market Report.

EU BAT Reference Document for the Textile Industry (2021)

Textile World (2020) – "Mass Pigmentation: A Dry Solution for Synthetic Fibers"

ENVIRONMENTAL IMPACT OF TRADITIONAL DETERGENT CHEMICAL COMPONENTS

RESOURCE CONSUMPTION FOR WASHING

Parameter	Range	Fonts
Water	40-80 L	EU Ecolabel (2022)
Surfactants	15-30 g (fosfati <0.5g)	ICEA (2023)
CO ₂ Emissions	0.3–1.2 kg per wash	Carbon Trust (2023)

(Ranking of 8 impact categories in Europe – Source: JRC European Commission, 2021)

- 1. Freshwater Eutrophication
 - → +50% Phosphates and phosphonates impact (even at low concentrations)
 Source: EPA Detergent Impacts Report (2020)
- 2. Human Toxicity / Carcinogenicity
 - o → 12% of tested detergents exceed WHO limits Source: EWG (2023)
 - 1,4 dioxane (residue from SLES/SLS)
- 3. Aquatic Toxicity
 - $_{\odot}$ \rightarrow 1 µg/L Nonylphenol ethoxylate (NPE) is enough to harm aquatic organisms Source: Regulation (EU) 2019/1021

COMPARISON OF WASHING TEMPERATURES

Temperature	Electricity Consumption (kWh/kg)	Thermal Energy Consumption (MJ/kg)
30°C	0.3–0.6	0.5–1.0
60°C	1.2–1.8	2.0–3.0
75°C	1.8–2.5	3.0–4.5

EU BAT (2021)] – Best Available Techniques for Textiles, Cap. 3.5.

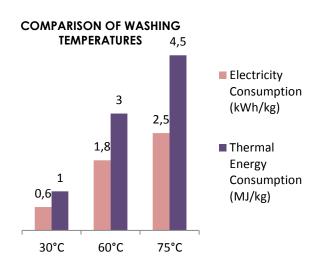
Environmental Impact

- 0.8-1.2 kg CO₂/kg CO₂ equivalent (at 75°C, EU energy mix) Source: JRC, 2023
- Micro-plastics released: At 75°C, polyester releases 2–3× more fibers compared to 30°C Source: Nature Sustainability, 2020

ENVIRONMENTAL IMPACT OF NANO-WASH

NanoWash detergent

is a concentrated nano-technology detergent designed for washing Respectlife fabrics. Thanks to its advanced formula, it effectively removes tough stains (oil, ink, wine) even at low temperatures (20-30°C), reducing energy consumption by 25-40% compared to conventional detergents.


NanoWash's ability to work effectively at low temperatures (cold wash) is a key factor in limiting microfiber release from synthetic fabrics.

Studies show that washing at 30°C vs. 60°C reduces micro-plastic shedding by 50% (Nature Sustainability, 2020).

Additionally, its non-corrosive components preserve fiber integrity, minimizing the wear that contributes to particle dispersion.

Parameter	Value
Туре	Nano-tech detergent
Density	1 kg/m³
Nanoparticle size	60 nm
Washing temperature	Cold wash compatible
Ph.	7 to 10
Surfactants	≥15%
Phosphates/corrosives	NO
Biodegradable	YES

Full sources:

European Commission (2021), Best Available Techniques for Textile Washing IUCN (2017), Primary Micro-plastics in the Oceans Nature Sustainability (2019), Microfiber Release vs. Washing Parameters

Plastic Soup Foundation (2023), Annual Report on Micro-plastic Filters

IMPATTI AMBIENTALI DEI DETERGENTI TRADIZIONALI vs NANOWASH

DETERGENTI TRADIZIONALI

Freshwater Eutroprfication +50% impatto da fosfati (EPA, 2020)

12% superano i limiti OMS; presenza di 1,4-diossano (EWG, 2023)

1 µg/L di NPE può danneggiare flora e fauna (EU 2019/1021)

Lavaggi ad alte temperature aumentano la dispersione

NanoWash (Eco-friendly)

Nessun fosfato: riduzione del rischio di eutrofizzazione (EWG, 2023)

Nessun composto cancerogeno: sicuro su pelle e tessuti (EU 2019/1021)

Formula biodegradabile: nessun NPE né interferenti (Nature Sustainability, 2020)

Non corrosivo: mantiene l'integità delle fibre

Recycling and disposal rates

Summary of data on cotton and polyester textile recycling within the European waste management system: General context (EU-27, year 2020)

The European Union generated about **6.95 million tons of textile waste** (around **16 kg per person**). Only a tiny fraction (**less than 1%**) of textile waste is turned back into new clothing.

End-of-Life

Cotton

Recycled cotton fibers are shorter and less strong, so they are often blended (for example, with virgin cotton or polyester) to improve yarn quality.

Polyester

Polyester recycling is mostly done through mechanical or thermo-mechanical processes, with some emerging chemical or enzymatic innovations (e.g., Circloo, Reo Eco) ([sciencedirect.com], [voguebusiness.com]).

Environmental cost per 1 kg of traditional fabric

Landfill

When a cotton garment ends up in a landfill, it decomposes slowly, releasing methane (CH_4), a powerful greenhouse gas.

For cotton textiles, landfill disposal is estimated to produce on average:

• 2 to 3 kg of CO₂ equivalent per kg (including transport and decomposition).

Economic Cost per 1 kg of Cotton Waste in Europe

• ~ €80–150 per ton ⇒ €0.08–0.15 per kg

Incineration

Incineration reduces waste volume but produces CO₂ and other pollutants. For cotton textiles, incineration is estimated to produce on average:

• 1-2 kg of CO₂ per kg.

Economic Cost per 1 kg of Cotton Waste in Europe

• ~ €100-200 per ton ⇒ €0.10-0.20 per kg

Recycling environmental cost per 1 kg of cotton

Mechanical recycling (especially pre-consumer) has a much lower footprint than landfill or incineration.

For cotton textiles, textile-to-textile recycling is estimated to produce on average:

• 0.5–1.1 kg of CO₂e per kg of mechanically recycled cotton.*

This value depends on material contamination and transport distance. *Source: McKinsey (2022), Resortecs (2024).

Recycling environmental cost per 1 kg of polyester (pet)

Recycled polyester from bottles (rPET) has a lower impact than virgin polyester.

However, textile-to-textile polyester recycling (not from bottles) is still developing and has higher costs and impacts. McKinsey estimate (2023):

For polyester textiles, textile-to-textile recycling is estimated to produce on average:

• 1.5-2.5 kg of CO₂ e per kg.

This value is higher than cotton due to more energy-intensive thermochemical processes.

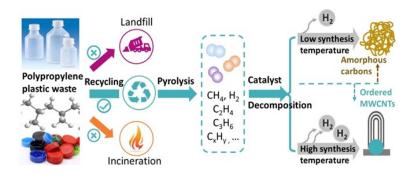
Respectlife's 100% pure pp recycling methods

• **New raw material:** The regenerated granules can be used to produce new yarn, pellet and a variety of plastic items, such as containers, packaging, toys, ecc..

"The damage caused by plastic recycling operations is two orders of magnitude lower than that caused by the production of virgin polymer."

Life Cycle Analysis of Possible Plastic Disposal Scenarios (Luca Ferrari)

• **Energy recovery**: programs divert plastics from landfills and result in using those materials to generate an added source of energy. The overall sustainability profile of energy recovery is positive.


The U.S. Environmental Protection Agency (EPA) recognizes energy recovery as an advantageous end-of-life approach, stating that it is a "clean, reliable, renewable source of energy" with a lower total environmental impact than most other energy sources.

Hydrogen from plastics waste, European Program IPCEI Hy2Use (Important Project of Common European Interest – Hydrogen Technologies and Systems) these program involves 35 projects in 13 EU countries will receive up to €5.2 billion in public funding, which is expected to attract an additional €7 billion in private investments.

Hydrogen Production Sites – IPCEI Hy2Use (EU Project)

- 1. Rome, Italy NextChem / Maire Tecnimont
- Development of a waste-to-hydrogen plant at the core of the Hydrogen Valley of Rome.
- Initial capacity: 1.5 kt H₂/year, scalable up to 20 kt H₂/year, processing 200 kt of non-recyclable waste annually.
- 2. Sarroch, Sardinia (Italy) SardHy Green Hydrogen
- A 20 MW electrolyzer powered by renewable energy, developed by Enel Green Power and Saras.

Located at an existing industrial site, producing green hydrogen.

SIMPLIFIED SUMMARY TABLE END OF USE

of the key data on textile recycling and disposal rates in Europe (EU-27, 2020)

Textile Waste & Recycling Overview (EU, 2020)

Metric	Value
Total textile waste generated	6.95 million tons (16 kg/person)
% recycled into new clothing	<1%

Recycling Methods & Challenges

Material	Recycling Process	Key Issues
Cotton	Mechanical recycling (often blended with virgin	Shorter, weaker fibers; requires
	cotton/polyester)	mixing
Polyester	Mostly mechanical/thermo-mechanical; some	Higher energy use; textile-to-
	chemical/enzymatic (e.g., Circloo, Reo Eco)	textile recycling still developing

Environmental Cost (CO₂e per 1 kg) (Textile-to-Textile)

Disposal Method	Cotton	Polyester
Landfill	2–3 kg CO₂e	
Incineration	1–2 kg CO₂e	
Recycling	0.5-1.1 kg CO₂e	1.5-2.5 kg CO₂e

Economic Cost (Europe, per 1 kg)

Disposal Method	€
Landfill	0.08-0.15
Incineration	0.10-0.20

Plastic (PP) Recycling & Hydrogen Projects

- 1. 100% Pure PP Recycling
 - o Recycled into pellets for yarn, containers, toys, etc.
 - o EPA-approved: Energy recovery from plastic is cleaner than virgin production.
- 2. EU Hydrogen from Waste (IPCEI Hy2Use)
 - \circ **Rome**, **Italy**: 1.5–20 kt H₂/year from non-recyclable waste (NextChem).
 - o Sardinia, Italy: 20 MW green hydrogen plant (Enel/Saras).
 - o Total funding: €5.2 billion (public) + €7 billion (private).

Key Takeaways

- <1% of EU textile waste becomes new clothes.
- Cotton recycling has the lowest CO₂ impact (0.5–1.1 kg/kg vs. 2–3 kg/kg for landfill).
- **Polyester recycling** is energy-intensive (1.5–2.5 kg CO₂e/kg).
- Waste-to-hydrogen projects in Italy aim to turn non-recyclable waste into clean energy.

RESPECTLIFE'S 100% PURE PP RECYCLING METHODS

New raw material

The regenerated granules can be used to produce new yam, pellets and a variety of plastic items, such as containers, packaging, toys, etc.

"The damage caused by plastic recycling operations is two orders of magnitude lower than that caused by the producon of virgin polymer."

Life Cycle Analysis of Possible Plastic Disposal Scenarios (Luca Ferrari)

Energy recovery

Programs divert plastics from landfills and result in using those materials to generate a added source of energy

The U.S. Environmental Protection Agency (EPA) recognizes energy recovery as an advantageous end-of-life approach. stating that it is a "clean, reliable, renewable source of energy" with a lower total environmental impact than most other enery sources.

Hydrogen from plastics waste, European Program IPCEI

Hydrogen Production Sites - IPCEI Hy2Use (EU Project)

- Rome, Italy NextChem / Maire Tecnimont
 Development of a waste-to-hydrogen plant at the core of the Hydrogen Valley of Rome
 Initial capacity; 1.5 kt H₂/year, scalable u po 20 kt H₂/year, processing 200 kt of non-recyclable wastte annually
- Sarroch, Sardinia (Italy) SardHy Green Hydrogen
 A 20 MW electrolyzer powered by renewable energy.

Empowering Sustainable Business: Circular Innovation in Professional Textiles Respectlife Srl & Elis Italia S.p.A.

Achieved Objectives

Environmental sustainability:

Up to 99% reduction in water consumption and CO₂ impact via polypropylene (PP) garments.

• Operational efficiency:

RFID tracking and smart washing reduced waste, losses, and costs.

Technical innovation:

PP excels in lightness, durability, hygiene, and comfort.

Circular economy:

PP is fully recyclable and supports energy recovery and hydrogen production.

□ Strategic Partnership

This synergy between technological innovation and industrial service shows how sustainability can be integrated into daily processes, generating economic, environmental, and social value.

Respectlife and Elis Italia share a common vision:

"To make professional textiles a model of circular economy, traceable, efficient, and zero-impact."

□ Future Prospects

- Extending the model to other garments and sectors (industry, catering, logistics).
- Integration with AI for predictive lifecycle management.
- Collaborations with public and healthcare entities to promote sustainable textiles.